skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Yeepo, Sasikarn"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We extend the Calderón–Zygmund theory for nonlocal equations tostrongly coupled system of linear nonlocal equations A s u = f {\mathcal{L}^{s}_{A}u=f}, where the operator A s {\mathcal{L}^{s}_{A}}is formally given by A s u = n A ( x , y ) | x - y | n + 2 s ( x - y ) ( x - y ) | x - y | 2 ( u ( x ) - u ( y ) ) 𝑑 y . \mathcal{L}^{s}_{A}u=\int_{\mathbb{R}^{n}}\frac{A(x,y)}{|x-y|^{n+2s}}\frac{(x-%y)\otimes(x-y)}{|x-y|^{2}}(u(x)-u(y))\,dy. For 0 < s < 1 {0<1}and A : n × n {A:\mathbb{R}^{n}\times\mathbb{R}^{n}\to\mathbb{R}}taken to be symmetric and serving asa variable coefficient for the operator, the system under consideration is the fractional version of the classical Navier–Lamé linearized elasticity system. The study of the coupled system of nonlocal equations is motivated by its appearance in nonlocal mechanics, primarily in peridynamics. Our regularity result states that if A ( , y ) {A(\,\cdot\,,y)}is uniformly Holder continuous and inf x n A ( x , x ) > 0 {\inf_{x\in\mathbb{R}^{n}}A(x,x)>0}, then for f L loc p {f\in L^{p}_{\rm loc}}, for p 2 {p\geq 2}, the solution vector u H loc 2 s - δ , p {u\in H^{2s-\delta,p}_{\rm loc}}for some δ ( 0 , s ) {\delta\in(0,s)}. 
    more » « less
  2. null (Ed.)